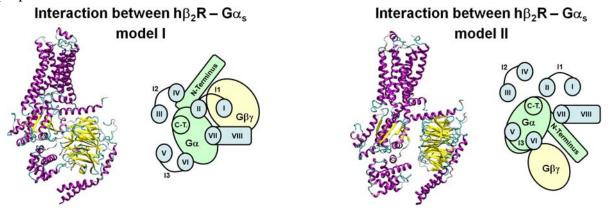

Distinct interactions between the human adrenergic β_2 receptor and $G\alpha_s$ – an in silico study


Andrea Strasser¹, Hans-Joachim Wittmann²

¹ Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg ² Faculty of Chemistry and Pharmacy, University of Regensburg

The aim of this study was to perform an in silico analysis of the interaction of the human β_2 adrenergic receptor with $G\alpha_s$. In a first step, a systematic surface-interaction-scan between the inactive or active human β_2 adrenergic receptor and $G\alpha_s$ was performed in order to gain knowledge about energetically preferred areas on the potential energy surface.

Subsequently, two energetically favored regions for the active human β_2 adrenergic receptor – $G\alpha_s$ – complex were identified. Two representative complex structures were put into a POPC bilayer and solvated in order to perform molecular dynamic simulations. The simulations revealed that both conformations, which have comparable potential energy, are stable. A mean number of about 14 hydrogen bonds was observed between the active receptor and $G\alpha_s$ for both conformations. Based on these results, two energetically favored β_2 -G α_s -complexes can be proposed.

[1] A. Strasser, H.-J. Wittmann, J Mol Model, 2010, 16, 1307-1318.